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Abstract

An introduction to model selection.

Science is the systematic study of the universe—through observation and
experiment—in the pursuit of knowledge that allows us to generalize. Although
considered bad form in the current climate of political correctness (Lind 1998,
2004; Ellis 2004; Browne 2006; Sewell 2007b), the ability to generalize is a
distilled version of what science is all about. Given some data, there will always
be an infinite number of models or hypotheses that fit the data equally well
and without making further assumptions there is no reason to prefer one model
or hypothesis over another. Therefore, one is forced to make assumptions that
provide an inductive bias.

Model selection is the task of choosing a model with the correct inductive
bias, which in practice means selecting parameters in an attempt to create a
model of optimal complexity for the given (finite) data. For a good book on
model selection, see Burnham and Anderson (2002). Many methods of model se-
lection employ some form of parsimony : that is, if they fit the data equally well,
they prefer a simpler model (see Zellner, Keuzenkamp and McAleer (2001)). For
example, Occam’s razor advises us that when competing theories have equal pre-
dictive power, one should choose the theory that introduces the fewest assump-
tions. For more details on Occam’s razor, see Hoffmann, Minkin and Carpenter
(1997) and the references therein. Bayesians use probability to choose among
hypotheses, P (hypothesis|data,background information) (Howson and Urbach
1989). Popperians choose among hypotheses that are equally consistent with
the observations by preferring those which are more falsifiable (Popper 1934,
1959). Likelihoodists understand the plausibility of a hypothesis in terms of
evidential support and they consider P (data|hypothesis) (Edwards 1992). Min-
imum description length (MDL) (Rissanen 1978) is a technique from algorithmic
information theory which dictates that the best hypothesis for a given set of data
is the one that leads to the largest compression of the data. One seeks to mini-
mize the sum of the length, in bits, of an effective description of the model and
the length, in bits, of an effective description of the data when encoded with
the help of the model. Classical Neyman–Pearson hypothesis testing considers
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P (data|null hypothesis) (the method is flawed, see Atkins and Jarrett (1979);
Minka (1998); Gabor (2004); Sewell (2008b)). The Akaike information criterion
(AIC ) (Akaike 1973) proposes that one should trade off the complexity of the
model with its goodness of fit to the sample data. The model with the lowest
AIC should be preferred. AIC = −2 log L + 2k, where log L is the maximum
log-likelihood and k is the number of parameters.

A taxonomy of model selection:
Empirical

• Adjusted R2 (Wherry 1931)

• Bootstrap (Efron 1979)

• Cross-validation (Stone 1974; Geisser 1975)

– Generalized cross-validation (GCV) (Craven and Wahba 1979)

– K-fold cross-validation

– Leave-one-out cross-validation

• Jacknife 1

• Linear regression

• Shibata’s model selector (sms) (Shibata 1981)

• Signal-to-noise ratio

• Test set validation

Theoretical

• Akaike information criterion (AIC)

– AIC (Akaike 1973)

– AICc (Hurvich and Tsai 1989)

– QAIC (Lebreton, et al. 1992)

– QAICc (Lebreton, et al. 1992)

– AICW (Wilks 1995)

• CAT (Parzen 1974, 1977)

• Mallows’ Cp (Cp) (Mallows 1973)

• Deviance information criterion (DIC) (Spiegelhalter, et al. 2002)

• FIC (Wei 1992)

• Final prediction error (FPE) (Akaike 1969)

1Richard von Mises was the first to conceive and apply the jackknife.
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• FPEα (Bhansali and Downham 1977)

• FPEC (de Luna 1998)

• FPER (Larsen and Hansen 1994)

• GM (Geweke and Meese 1981)

• Generalized prediction error (GPE) (Moody 1991, 1992)

• Hannan and Quinn Criterion (HQ) (Hannan and Quinn 1979)

• KIC (Cavanaugh 1999)

• KICc (Cavanaugh 2004)

• Minimum description length (MDL) (Rissanen 1978)

• Minimum message length (MML) (Wallace and Boulton 1968)

• Predicted squared error (PSE) (Barron 1984)

• PRESS (Allen 1974)

• Schwarz criterion (also Schwarz information criterion (SIC) or Bayesian
information criterion (BIC) or Schwarz-Bayesian information criterion)
(Schwarz 1978)

• Structural risk minimization (SRM) (Vapnik and Chervonenkis 1974)

• TIC (Takeuchi’s information criterion) (Takeuchi 1976)

• VC-dimension (Vapnik and Chervonekis 1968; Vapnik and Chervonenkis
1971; Vapnik 1979)

I am in the process of writing a paper on ‘Overfitting and Data Mining’ (i.e.
model selection) as I have been invited to speak at the Automated Trading 2008
conference (Sewell 2008a).

Ensemble methods seek to combine models in an optimal way, so are related
to model selection, see Sewell (2007a).
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